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Abstract

We present a new algorithm to model the input uncertainty and its propagation in incompressible flow simu-
lations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the
Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the
random dimension to obtain the equations in the weak form. The resulting system of deterministic equations is
then solved with standard methods to obtain the solution for each random mode. This approach can be consid-
ered as a generalization of the original polynomial chaos expansion, first introduced by N. Wiener (1938). The
original method employs the Hermite polynomials (one of the thirteen members of the Askey scheme) as the
basis in random space. The algorithm is applied to pressure-driven channel flows with random wall boundary
conditions, and to external flows with random freestream. Efficiency and convergence are studied by comparing
with exact solutions as well as numerical solutions obtained by Monte Carlo simulations. It is shown that the
generalized polynomial chaos method promises a substantial speed-up compared with the Monte Carlo method.
The utilization of different type orthogonal polynomials from the Askey scheme also provides a more efficient way
to represent general non-Gaussian processes compared with the original Wiener-Hermite expansions.

∗Corresponding author, gk@cfm.brown.edu

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
10 OCT 2002 2. REPORT TYPE 

3. DATES COVERED 
  00-10-2002 to 00-10-2002  

4. TITLE AND SUBTITLE 
Modeling Uncertainty in Flow Simulations via Generalized Polynomial
Chaos 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Brown University,Division of Applied Mathematics,182 George 
Street,Providence,RI,02912 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

37 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction

Recently there has been an intense interest in verification and validation of large-scale simulations and in modeling

uncertainty [1, 2, 3]. In simulations, just like in the experiments, we often question the accuracy of the results and

we construct a posteriori error bounds, but the new objective is to model the uncertainty from the beginning of

the simulations and not simply as an afterthought. Numerical accuracy and error control have been employed in

simulations for some time now, at least for the modern discretizations, e.g. [4, 5]. However, there are always some

uncertain components associated with the physical problems, specifically with such diverse factors as constitutive

laws, boundary and initial conditions, transport coefficients, source and interaction terms, geometric irregularities

(e.g. roughness), etc. .

Most of the research efforts in CFD research so far have been in developing efficient algorithms for different

applications, assuming ideal inputs with precisely defined computational domains. With the field reaching some

degree of maturity now, we naturally pose the more general question of how to model uncertainty and stochastic

inputs, and how to formulate algorithms to accurately reflect the propagation of the uncertainty. To this end, the

Monte Carlo approach can be employed but it is computationally expensive and is only used as the last resort.

The sensitivity method is a more economical approach, based on the moments of samples, but it is less robust and

depends strongly on the modeling assumptions [6]. One popular technique is the perturbation method where all

the stochastic quantities are expanded around their mean via Taylor series. This approach, however, is limited to

small perturbations and does not readily provide information on high-order statistics of the response. The resulting

system of equations becomes extremely complicated beyond second-order expansion. Another approach is based on

expanding the inverse of the stochastic operator in a Neumann series, but this too is limited to small fluctuations,

and even combinations with the Monte Carlo method seem to result in computationally prohibitive algorithms for

complex systems [7].

A more effective approach pioneered by Ghanem and Spanos [8] in the context of finite elements for solid mechanics

is based on a spectral representation of the uncertainty. This allows high-order representation, not just first-order as

in most perturbation-based methods, at high computational efficiency. It is based on the original theory of Wiener

(1938) on homogeneous chaos [9, 10]. This approach was employed in turbulence in the 1960s [11, 12, 13]. However,

it was realized that the chaos expansion converges slowly for turbulent field [14, 15, 16], so polynomial chaos did not

receive much attention for a long time.

The main purpose of this paper is to demonstrate that the polynomial chaos expansion can be effective in modeling
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uncertainties associated with fluid flows. When the uncertainty has relatively strong correlation, the chaos expansion

converges fast; in the ideal case it converges exponentially fast due to the fact that it is a spectral expansion in the

random space. The spectral representation of the uncertainty is based on a trial basis {Ψ(ξ(θ))} where θ denotes

the random event. For example, the vorticity has the following finite-dimensional representation

ω(x, t, θ) =

P
∑

i=0

ωi(x, t)Ψi(ξ(θ)).

Here ωi(x, t) represents the deteministic coefficents and will be denoted as the random mode (i) of the vorticity. The

random trial basis is a set of complete orthogonal polynomials in terms of the multi-dimensional random variable

ξ(θ) with a specific probability distribution. Ψ(ξ(θ)) is a functional, as it is a function of random variables ξ which

are functions of the random parameter θ ∈ [0, 1]. For the original polynomial chaos introduced by Wiener, the

polynomial trial basis is the Hermite polynomials in terms of multi-dimensional Gaussian random variables. In this

paper, we will apply this expansion to fluid flows and further generalize the trial basis to other orthogonal polynomials

from the Askey scheme [17]. For different types of basis polynomials, the random variables ξ(θ) are not restricted

to the Gaussian variables. Therefore, we have additional flexibility to represent the non-Gaussian processes more

efficiently. The theory of orthogonal functionals plays a key role in the algorithms developed here. We note that the

Monte Carlo algorithm can be thought of as a subcase of the above representation corresponding to the collocation

procedure where the test basis is Ψi(θ) = δ(θ − θi), where δ is the Kronecker delta function and θi refers to an

isolated random event.

The algorithms we develop here are general but we present applications with uncertainty associated with boundary

conditions. This situation is encountered, for example, in micro-channel flows but also in classical flows such as the

freestream flow past bluff bodies. The generalized polynomial chaos expansion can handle both Gaussian and

non-Gaussian random processes. For certain distributions there exist a “best” representation which results in fast

convergence rate. For example, for Poisson distributions is the Charlier polynomials, for Gamma distributions the

Laugerre polynomials, for binomial distributions the Krawtchouk polynomials, for the beta distributions the Jacobi

polynomials, etc. .

In the next section we review the theory of the Askey scheme of hypergeometric orthogonal polynomials, and in

section 3 we present the framework of the generalized polynomial chaos. In section 4 we address its implementation

details when applied to Navier-Stokes equations. In section 5 we present the computational results of various

applications and demonstrate the convergence property of the chaos expansion. We conclude the paper with a

discussion on open questions. In the appendix we include a brief review of orthogonal polynomials.
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2 The Askey Scheme of Hypergeometric Orthogonal Polynomials

The theory of orthogonal polynomials is relatively mature and several books have been devoted to their study (e.g.,

[18, 19, 20]). More recent work has shown that an important class of orthogonal polynomials belongs to the Askey

scheme of the hypergeometric polynomials [17]. In this section, we briefly review the theory of hypergeometric

orthogonal polynomials; we adopt the notation of [21, 22].

2.1 The Generalized Hypergeometric Series

We first introduce the Pochhammer symbol (a)n defined by

(a)n =

{

1, if n = 0,
a(a+ 1) · · · (a+ n− 1), if n = 1, 2, 3, . . . .

(1)

In terms of Gamma function, we have

(a)n =
Γ(a+ n)

Γ(a)
, n > 0. (2)

The generalized hypergeometric series rFs is defined by

rFs(a1, · · · , ar; b1, · · · , bs; z) =
∞
∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
, (3)

where bi 6= 0,−1,−2, . . . for i = {1, . . . , s} to ensure the denominator factors in the terms of the series are never

zero. The radius of convergence ρ of the hypergeometric series is

ρ =







∞ if r < s+ 1,
1 if r = s+ 1,
0 if r > s+ 1.

(4)

Some elementary cases of the hypergeometric series are: the exponential series 0F0 and the binomial series 1F0.

If one of the numerator parameters ai, i = 1, . . . , r is a negative integer, say a1 = −n, the hypergeometric series

(3) terminates at the nth-term and becomes a polynomial in z,

rFs(−n, · · · , ar; b1, · · · , bs; z) =
n
∑

k=0

(−n)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
. (5)

2.2 Some Properties of the Orthogonal Polynomials

A system of polynomials {Qn(x), n ∈ N} where Qn(x) is a polynomial of exact degree n and N = {0, 1, 2, . . . } or

N = {0, 1, . . . , N} for a finite nonnegative integer N , is an orthogonal system of polynomials with respect to some

real positive measure φ if the following orthogonality relations are satisfied

∫

S

Qn(x)Qm(x)dφ(x) = h2nδnm, n,m ∈ N , (6)
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where S is the support of the measure φ and the hn are non-zero constants. The system is called orthonormal if

hn = 1.

The measure φ often has a density w(x) or weights w(i) at points xi in the discrete case. The relations (6) then

become
∫

S

Qn(x)Qm(x)w(x)dx = h2nδnm, n,m ∈ N , (7)

in the continuous case, or
M
∑

i=0

Qn(xi)Qm(xi)w(xi) = h2nδnm, n,m ∈ N , (8)

in the discrete case where it is possible that M =∞.

The density w(x), or weights w(i) in the discrete case, is also commonly referred as the weighting function in the

theory of orthogonal polynomials. It will be shown later that the weighting functions for some orthogonal polynomials

are identical to certain probability functions. For example, the weighting function for the Hermite polynomials is

the same as probability density function of the Gaussian random variables. This fact plays an important role in

representing stochastic processes with orthogonal polynomials.

2.3 The Askey Scheme

The Askey scheme, which is represented as a tree structure in figure 1 (following [22]), classifies the hypergeometric

orthogonal polynomials and indicates the limit relations between them. The ‘tree’ starts with the Wilson polynomials

and the Racah polynomials on the top. They both belong to the class 4F3 of the hypergeometric orthogonal

polynomials given by equation (5). The Wilson polynomials are continuous while the Racah polynomials are discrete.

The lines connecting different polynomials denote the limit transition relationships between them; this implies that

the polynomials at the lower end of the lines can be obtained by taking the limit of one of the parameters from their

counterparts on the upper end. For example, the limit relation between Jacobi polynomials P
(α,β)
n (x) and Hermite

polynomials Hn(x) is

lim
α→∞

α−
1
2
nP (α,α)

n

(

x√
α

)

=
Hn(x)

2nn!
,

and between Meixner polynomials Mn(x;β, c) and Charlier polynomials Cn(x; a) is

lim
β→∞

Mn

(

x;β,
a

a+ β

)

= Cn(x; a).

For a detailed account of the limit relations of Askey scheme, the interested reader should consult [21] and [22].

The orthogonal polynomials associated with the generalized polynomial chaos, which will also be called the

Askey-Chaos hereafter, include: Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk and Hahn polynomials.
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Figure 1: The Askey scheme of orthogonal polynomials

A review of their definitions and properties can be found in the appendix of this paper.

3 The Generalized Polynomial Chaos

In this section we introduce the generalized polynomial chaos expansion along with the Karhunen-Loeve (KL) ex-

pansion, another classical technique for representing random processes. The KL expansion can be used in some cases

to represent efficiently the known stochastic fields, i.e., the stochastic inputs.

3.1 The Original Wiener Polynomial Chaos: Hermite-Chaos

The original polynomial chaos, also termed as the homogeneous chaos, was first introduced by Wiener [9]. It employs

the Hermite polynomials in terms of Gaussian random variables. According to a theorem by Cameron & Martin

[23], it can approximate any functionals in L2(C) and converges in the L2(C) sense, where C is the space of real

functions which are continuous on the interval [0, 1] and vanish at 0. Therefore, polynomial chaos provides a means

for expanding second-order random processes in terms of Hermite polynomials. Second-order random processes are

processes with finite variance, and this applies to most physical processes. Thus, a general second-order random

6



process X(θ), viewed as a function of θ, i.e. the random event, can be represented in the form

X(θ) = a0H0

+

∞
∑

i1=1

ai1H1(ξi1(θ))

+

∞
∑

i1=1

i1
∑

i2=1

ai1i2H2(ξi1(θ), ξi2(θ))

+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

+ · · · , (9)

where Hn(ξi1 , . . . , ξin) denote are Hermite polynomials of order n in terms of the multi-dimensional independent

standard Gaussian random variables ξ = (ξi1 , . . . , ξin) with zero mean and unit variance. The above equation is the

discrete version of the original Wiener polynomial chaos expansion, where the continuous integrals are replaced by

summations. The general expression of the Hermite polynomials is given by

Hn(ξi1 , . . . , ξin) = e
1
2
ξT ξ(−1)n ∂n

∂ξi1 · · · ∂ξin
e−

1
2
ξT ξ. (10)

For example, the one-dimensional Hermite polynomials are:

Ψ0 = 1, Ψ1 = ξ, Ψ2 = ξ2 − 1, Ψ3 = ξ3 − 3ξ, . . . (11)

For notational convenience, equation (9) can be rewritten as

X(θ) =

∞
∑

j=0

âjΨj(ξ), (12)

where there is a one-to-one correspondence between the functions Hn(ξi1 , . . . , ξin) and Ψj(ξ), and also between the

coefficients âj and ai1,...,ir . In equation (9) the summation is carried out according to the order of the Hermite

polynomials, while in equation (12) it is simply a re-numbering with the polynomials of lower order counted first.

For clarity, the two-dimensional expansion is shown here, both in the fully expanded form ( see equation (9))

X(θ) = a0H0 + a1H1(ξ1) + a2H1(ξ2)

+ a11H2(ξ1, ξ1) + a12H2(ξ2, ξ1) + a22H2(ξ2, ξ2) + . . . , (13)

and the simplified form (see equation (12))

X(θ) = â0Ψ0 + â1Ψ1 + â2Ψ2 + â3Ψ3 + â3Ψ4 + â5Ψ5 + . . .

= â0 + â1ξ1 + â2ξ2 + â3(ξ
2
1 − 1) + â3(ξ1ξ2) + â5(ξ

2
2 − 1) + . . . (14)
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The polynomial chaos forms a complete orthogonal basis in the L2 space of the Gaussian random variables, i.e.,

< ΨiΨj >=< Ψ2
i > δij , (15)

where δij is the Kronecker delta and < ·, · > denotes the ensemble average. This is the inner product in the Hilbert

space of the Gaussian random variables

< f(ξ)g(ξ) >=

∫

f(ξ)g(ξ)W (ξ)dξ. (16)

The weighting function is

W (ξ) =
1

√

(2π)n
e−

1
2
ξT ξ, (17)

where n is the dimension of ξ. What distinguishes the Wiener-Hermite expansion from many other possible complete

sets of expansions is that the polynomials here are orthogonal with respect to the weighting function W (ξ) which

has the form of the multi-dimensional independent Gaussian probability distribution with unit variance. We will use

the term Hermite-Chaos hereafter to denote the Wiener polynomial chaos.

3.2 The Generalized Polynomial Chaos: Askey-Chaos

The Hermite-Chaos expansion has been quite effective in solving stochastic differential equations with Gaussian

inputs as well as certain types of non-Gaussian inputs, e.g. lognormal disstributions [8], [24, 25]; this can be justified

by the Cameron-Martin theorem [23]. However, for general non-Gaussian random inputs, the convergence rate is not

fast. In some cases the convergence rate is, in fact, severely deteriorated.

In order to deal with more general random inputs, we introduce the generalized polynomial chaos expansion,

the Askey-Chaos, as a generalization of the original Wiener’s Hermite-Chaos expansion. The expansion basis of

the Askey-Chaos is formed by the complete set of orthogonal polynomials from the Askey scheme (see section 2.3).

Similar to section 3.1, we represent the general second-order random process X(θ) as

X(θ) = a0I0

+
∞
∑

i1=1

ci1I1(ζi1(θ))

+

∞
∑

i1=1

i1
∑

i2=1

ci1i2I2(ζi1(θ), ζi2(θ))

+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ci1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ))

+ · · · , (18)
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where In(ζi1 , . . . , ζin) denotes the Askey-Chaos of order n in terms of the multi-dimensional random variables ζ =

(ζi1 , . . . , ζin). In the Askey-Chaos expansion, the polynomials In are not restricted to Hermite polynomials but

instead they could be any member of the Askey scheme, as shown in figure 1. Again for notational convenience, we

rewrite equation (18) as

X(θ) =

∞
∑

j=0

ĉjΦj(ζ), (19)

where there is a one-to-one correspondence between the functions In(ζi1 , . . . , ζin) and Φj(ζ), and their coefficients

ĉj and ci1,...,ir . Since each type of polynomials from the Askey scheme form a complete basis in the Hilbert space

determined by their corresponding support, we can expect each type of Askey-Chaos to converge to any L2 functional

in the L2 sense in the corresponding Hilbert functional space as a generalized result of Cameron-Martin theorem

([23] and [26]). The orthogonality relation of the Askey-Chaos polynomial chaos takes the form

< ΦiΦj >=< Φ2
i > δij , (20)

where δij is the Kronecker delta and < ·, · > denotes the ensemble average which is the inner product in the Hilbert

space of the variables ζ

< f(ζ)g(ζ) >=

∫

f(ζ)g(ζ)W (ζ)dζ, (21)

or

< f(ζ)g(ζ) >=
∑

ζ

f(ζ)g(ζ)W (ζ) (22)

in the discrete case. Here W (ζ) is the weighting function corresponding to the Askey polynomials chaos basis {Φi};

see the appendix for detailed formulas. Some types of orthogonal polynomials from the Askey scheme have weighting

functions of the same form as the probability function of certain types of random distributions. In practice, we then

choose the type of independent variables ζ in the polynomials {Φi(ζ)} according to the type of random distributions

as shown in table 1. It is clear that the original Wiener polynomial chaos corresponds to the Hermite-Chaos and

is a subset of the Askey-Chaos. The Hermite-, Laguerre- and Jacobi-Chaos are continuous chaos, while Charlier-,

Meixner-, Krawtchouk- and Hahn-Chaos are discrete chaos. It is worth mentioning that the Legendre polynomials,

which is a special case of the Jacobi polynomials P
(α,β)
n (x) with parameters α = β = 0, correspond to an important

distribution — the uniform distribution. Due to the importance of the uniform distribution, we list it separately in

the table and term the corresponding chaos expansion as the Legendre-Chaos.
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Random inputs Wiener-Askey chaos Support

Continuous Gaussian Hermite-Chaos (−∞,∞)
Gamma Laguerre-Chaos [0,∞)
Beta Jacobi-Chaos [a, b]

Uniform Legendre-Chaos [a, b]
Discrete Poisson Charlier-Chaos {0, 1, 2, . . . }

Binomial Krawtchouk-Chaos {0, 1, . . . , N}
Negative Binomial Meixner-Chaos {0, 1, 2, . . . }
Hypergeometric Hahn-Chaos {0, 1, . . . , N}

Table 1: Correspondence of the type of Wiener-Askey polynomial chaos to the type of random inputs (N ≥ 0 is a
finite integer).

3.3 The Karhunen-Loeve Expansion

The Karhunen-Loeve (KL) expansion [27] is another way of representing a random process. It is based on the spectral

expansion of the covariance function of the process. Let us denote the process by h(x, θ) and its covariance function

by Rhh(x,y), where x and y are the spatial or temporal coordinates. By definition, the covariance function is real,

symmetric, and positive definite. All eigenfunctions are mutually orthogonal and form a complete set spanning the

function space to which h(x, θ) belongs. The KL expansion then takes the following form:

h(x, θ) = h̄(x) +

∞
∑

i=1

√

λiφi(x)ξi(θ), (23)

where h̄(x) denotes the mean of the random process, and ξi(θ) forms a set of independent random variables. Also,

φi(x) and λi are the eigenfunctions and eigenvalues of the covariance function, respectively, i.e.,

∫

Rhh(x,y)φi(y)dy = λiφi(x). (24)

Among many possible decompositions of a random process, the KL expansion is optimal in the sense that the

mean-square error of the finite representation of the process is minimized. Its use, however, is limited as the covariance

function of the solution process is often not known a priori. Nevertheless, the KL expansion provides an effective

means of representing the input random processes when the covariance structure is known.

4 The Askey-Chaos for Navier-Stokes Equations

In this section we present the solution procedure for solving the stochastic Navier-Stokes equations by generalized

polynomial chaos expansion. The randomness in the solution can be introduced through boundary conditions, initial

conditions, forcing, etc..
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4.1 Governing Equations

We employ the incompressible Navier-Stokes equations

∇ · u = 0, (25)

∂u

∂t
+ (u · ∇)u = −∇Π+Re−1∇2u, (26)

where Π is the pressure and Re the Reynolds number. All flow quantities, i.e., velocity and pressure are considered

stochastic processes. A random dimension, denoted by the parameter θ, is introduced in addition to the spatial-

temporal dimensions (x, t), thus

u = u(x, t; θ); Π = Π(x, t; θ). (27)

We then apply the generalized polynomial chaos expansion, or the Askey-Chaos (19), to these quantities and obtain

u(x, t; θ) =
P
∑

i=0

ui(x, t)Φi(ζ(θ)); Π(x, t; θ) =
P
∑

i=0

Πi(x, t)Φi(ζ(θ)), (28)

where we have replaced the infinite summation in infinite dimension of ζ in equation (12) by a truncated finite-term

summation in finite dimensional space of ζ. The total number of expansion terms, (P + 1), depends on the number

of random dimensions (n) of ζ and the highest order (p) of the polynomials Φ [8]:

P =

p
∑

s=1

1

s!

s−1
∏

r=0

(n+ r). (29)

The most important aspect of the above expansion is that the random processes have been decomposed into a set

of deterministic functions in the spatial-temporal variables multiplied by the random basis polynomials which are

independent of these variables.

Substituting (28) into Navier-Stokes equations ((25) and (26)) and noting that the partial derivatives are taken

in physical space and thus commute with the operations in random space, we obtain the following equations

P
∑

i=0

∇ · ui(x, t)Φi = 0, (30)

P
∑

i=0

∂ui(x, t)

∂t
Φi +

P
∑

i=0

P
∑

j=0

[(ui · ∇)uj)]ΦiΦj = −
P
∑

i=0

∇Πi(x, t)Φi +Re−1
P
∑

i=0

∇2uiΦi. (31)

We then project the above equations onto the random space spanned by the basis polynomials {Φi} by taking the

inner product of above equation with each basis. By taking < ·,Φk > and utilizing the orthogonality condition (15),

we obtain the following set of equations:
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For each k = 0, . . . P ,

∇ · uk = 0, (32)

∂uk
∂t

+
1

< Φ2
k >

P
∑

i=0

P
∑

j=0

eijk[(ui · ∇)uj)] = −∇Πk +Re−1∇2uk, (33)

where eijk =< ΦiΦjΦk >. Together with < Φ2
i >, the coefficients eijk can be evaluated analytically from the

definition of Φi. The set of equations consists of (P + 1) system of ‘Navier-Stokes-like’ equations for each random

mode coupled through the convective terms.

4.2 Numerical Formulation

4.2.1 Temporal Discretization

We employ the semi-implicit high-order fractional step method, which for the standard deterministic Navier-Stokes

equations ((25) and (26)) has the form [28]:

û−∑J
q=0 αqu

n−q

∆t
= −

J
∑

q=0

βq [(u · ∇)u]
n−q

, (34)

ˆ̂u− û

∆t
= −∇Πn+1, (35)

γ0u
n+1 − ˆ̂u

∆t
= Re−1∇2un+1, (36)

where J is order of accuracy in time and α, β and γ are integration weights. A pressure Poisson equation is obtained

by enforcing the discrete divergence-free condition ∇ · un+1 = 0

∇2Πn+1 =
1

∆t
∇ · û, (37)

with the appropriate pressure boundary condition given as

∂Π

∂n
= −n ·

[

û+Re−1∇× ωn+1
]

, (38)

where n is the outward unit normal vector and ω = ∇× u is the vorticity. The method is stiffly-stable and achieves

third-order accuracy in time; the coefficients for the integration weights can be found in [29].

In order to discretize the stochastic Navier-Stokes equations, we apply the same approach to the coupled set of

equations (32) and (33):

12



For each k = 0, . . . , P ,

ûk −
∑J

q=0 αqu
n−q
k

∆t
= − 1

< Φ2
k >

J
∑

q=0

βq





P
∑

i=0

P
∑

j=0

eijk(ui · ∇)uj





n−q

, (39)

ˆ̂uk − ûk

∆t
= −∇Πn+1

k , (40)

γ0u
n+1
k − ˆ̂uk
∆t

= Re−1∇2un+1
k . (41)

The discrete divergence-free condition for each mode ∇ ·un+1
k = 0 results in a set of consistent Poisson equations for

each pressure mode

∇2Πn+1
k =

1

∆t
∇ · ûk, k = 0, . . . , P, (42)

with appropriate pressure boundary condition derived similarly as in [28]

∂Πk

∂n
= −n ·

[

ûk +Re−1∇× ωn+1
k

]

, k = 0, . . . , P, (43)

where n is the outward unit normal vector along the boundary, and ωk = ∇× uk is the vorticity for each random

mode.

4.2.2 Spatial Discretization

Spatial discretization can be carried out by any method, but here we employ the spectral/hp element method in

order to have better control of the numerical error [29]. In addition, the all-spectral discretization in space and

along the random direction leads to homogeneous inner products, which in turn results in more efficient ways of

inverting the algebraic systems. In particular, the spatial discretization is based on Jacobi polynomials on triangles

or quadrilaterals in two-dimensions, and tetrahedra, hexahedra or prisms in three-dimensions.

4.3 Post-Processing

The coefficients in the expansion of the solution process (equation (28)) are obtained after solving equations (39)

to (43). We then obtain the analytical form (in random space) of the solution process. It is possible to perform a

number of analytical operations on the stochastic solution in order to carry out other analysis such as the sensitivity

analysis. Specifically, the mean solution is contained in the expansion term with index of zero. The second-moment,

i.e., the covariance function is given by

Ruu(x1, t1;x2, t2) = < u(x1, t1)− u(x1, t1),u(x2, t2)− u(x2, t2) >

=

P
∑

i=1

[

ui(x1, t1)ui(x2, t2) < Φ2
i >

]

. (44)
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Note that the summation starts from index (i = 1) instead of 0 to exclude the mean, and that the orthogonality

of the Askey-Chaos basis {Φi} has been used in deriving the above equation. The variance of the solution, i.e. the

‘mean-square’ value, is obtained as

V ar(u(x, t)) =<
(

u(x, t)− u(x, t)
)2

>=
P
∑

i=1

[

u2i (x, t) < Φ2
i >

]

, (45)

and the root-mean-square (rms) is simply the square root of the variance. Similar expressions can be obtained for

the pressure field.

5 Numerical Results

In this section we present numerical results of the applications of the generalized polynomial chaos. We first consider

the stochastic ordinary differential equation and demonstrate exponential convergence with the optimal Askey-Chaos.

We then solve the incompressible flow in the pressure-driven channel where there is uncertainty associated with the

wall boundary conditions. Subsequently, we simulate laminar flow past a circular cylinder with uncertain freestream.

5.1 Stochastic Ordinary Differential Equation

5.1.1 Solution Procedure

To demonstrate the convergence type, we consider the ordinary differential equation

dy(t)

dt
= −ky, y(0) = ŷ, (46)

where the decay rate coefficient k is considered to be a random variable k(θ) with certain distribution and zero mean

value k̄ = 0. The probability function is f(k) for the continuous case or f(ki) for the discrete case. The deterministic

solution is constant over time y(t) = ŷe−k̄t = ŷ, while the mean of stochastic solution is

ȳ(t) = ŷ

∫

S

e−ktf(k)dk or ȳ(t) = ŷ
∑

i

e−kitf(ki) (47)

corresponding to the continuous and discrete distributions, respectively. The integration and summation are taken

within the support of the corresponding distribution, and in general the mean of stochastic solution is time-varying.

By applying the generalized polynomial chaos expansion of equation (19) to the solution y and random input k

y(t) =
P
∑

i=0

yi(t)Φi, k =
P
∑

i=0

kiΦi (48)

and substituting the expansions into the governing equation, we obtain

P
∑

i=0

dyi(t)

dt
Φi = −

P
∑

i=0

P
∑

j=0

ΦiΦjkiyj(t). (49)
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A Galerkin projection onto each polynomial basis results in a set of coupled ordinary differential equations for each

random mode:

dyl(t)

dt
= − 1

< Φ2
l >

P
∑

i=0

P
∑

j=0

eijlkiyj(t), l = 0, 1, . . . , P, (50)

where eijl =< ΦiΦjΦl >. A standard second-order Runge-Kutta scheme is used to integrate the equations. We

define the two error measures for the mean and variance of the solution

εmean(t) =

∣

∣

∣

∣

ȳ(t)− ȳexact(t)

ȳexact(t)

∣

∣

∣

∣

, εvar(t) =

∣

∣

∣

∣

σ2(t)− σ2exact(t)

σ2exact(t)

∣

∣

∣

∣

, (51)

where ȳ(t) = E[y(t)] is the mean value of y(t) and σ2(t) = E
[

(y(t)− ȳ(t))
2
]

is the variance of the solution. The

initial condition is fixed to be ŷ = 1 and the integration is performed up to t = 1 (non-dimensional time units).

5.1.2 Gaussian Distribution and Hermite-Chaos

When k is a Gaussian random variable with probability density function f(k) = 1√
2π
e−k

2/2, the optimal Askey-

Chaos is the Hermite-Chaos which can represent the input k ‘exactly’ with first-order expansion. Figure 2 shows the

solution by the Hermite-Chaos expansion. The convergence to zero of errors in the mean and variance as the order

of Hermite-Chaos increases is shown on semi-log plot; exponential convergence rate is achieved.
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Figure 2: Solution with Gaussian random input by fourth-order Hermite-Chaos; Left: Solution of each random mode,
Right: Error convergence of the mean and the variance.

5.1.3 Poisson Distribution and Charlier-Chaos

As an example of the discrete case, we assume k is a random variable with Poisson distribution

f(k;λ) = e−λ
λk

k!
, k = 0, 1, 2, . . . , λ > 0. (52)

In this case the optimal Askey-Chaos is the Charlier-Chaos (see table 1). Results with fourth-order Charlier-
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Figure 3: Solution with Poisson random input by 4th-order Charlier-Chaos; Left: Solution of each mode (λ = 1),
Right: Error convergence of the mean and the variance with different λ.

Chaos expansion are shown in figure 3 for two different distributions corresponding to different values of λ. Again,

exponential convergence rate is observed.

5.1.4 Effects of Non-optimal Basis

In this section we present examples of representing a stochastic input with non-optimal Askey-Chaos. More specif-

ically, we present results of using Hermite-Chaos expansion for an exponential distribution. Although, in theory,

Hermite-Chaos converges and it has been successfully applied to some non-Gaussian processes (e.g., lognormal [24]),

we demonstrate numerically here that exponential convergence rate is not realized. In figure 4 the approximation of
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Figure 4: Approximation of exponential distribution with Hermite-Chaos; Left: PDF of different orders of approx-
imations of exponential random variable by Hermite-Chaos; Right: Error convergence of the mean solution with
Laguerre-Chaos and Hermite Chaos.

an exponential random variable by Hermite-Chaos is plotted on the left. It can be seen the Hermite-Chaos converges
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and the fifth-order approximation is very close to the exact distribution, with some noticeable difference at x ∼ 0

where the PDF reaches its peak at 1. Subsequently, if we continue to use Hermite-Chaos to solve the equation (46)

with k being an exponential random variable, the exponential convergence rate will not be maintained as opposed

to the Laguerre-Chaos.

Another interesting example is shown in figure 5, when a beta random variable is approximated by the Hermite-

Chaos. The convergence of Hermite-Chaos can be clearly seen from the approximated PDF compared with the
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Figure 5: PDF of approximations of Beta distributions by Hermite-Chaos; Left: α = β = 0, the uniform distribution,
Right: α = 2, β = 0.

exact PDF. The special case of α = β = 0 corresponds to the uniform distribution, and we observe oscillations

near the corners of the square. This is analogous to the familiar Gibb’s phenomenon in the deterministic spectral

approximation. In this case, the best choice is the Jacobi-Chaos which can represent the beta random variable

exactly with only the first-order term. We expect that exponential convergence rate will not be maintained if the

non-optimal Hermite-Chaos is used to solve equation (46) instead of the Jacobi-Chaos.

5.2 Pressure-Driven Channel Flow

We consider a pressure-driven channel flow as shown in figure 6, where the boundary conditions are considered to be

uncertain. The domain (see figure 6) has dimensions such that y ∈ [−1, 1] and x ∈ [−5, 5]. The pressure gradient,

acting like a driving force, is equal to twice the kinematic viscosity, and thus for a no-slip wall condition the solution

is a parabolic profile with centerline velocity equals unity.

5.2.1 Pressure-Driven Channel Flow: Uniform Boundary Conditions

We assume that the boundary conditions at the two walls are uncertain with zero mean value, i.e., u1 = 0+σ1ξ1 and

u2 = 0+σ2ξ2, where ξ1 and ξ2 are two idependent random variables, and σ1 and σ2 are their corresponding standard

deviations. Since the boundary conditions are uniform in space, with periodic boundary conditions specified in the
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Figure 6: Schematic of the domain for pressure-driven channel flow with random boundary conditions.

streamwise direction, the nonlinear terms in the stochastic Navier-Stokes equations (33) vanish, and we obtain the

exact solution

u(x, y) = (1− y2) +
1− y

2
σ1ξ1 +

1 + y

2
σ2ξ2, v(x, y) = 0. (53)

The solution consists of a parabolic profile for the mean solution and two linear random modes (ξ1 and ξ2) linearly

distributed across the channel width. Note the form of the exact solution is independent of the distribution type of

random variables ξ1 and ξ2.
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Figure 7: Solution of the pressure-driven channel with uniform Gaussian random boundary conditions; Left: the
solution profile, Right: development of random modes of v-velocity with nonzero initial conditions.

On the left of figure 7 we show the solution profile across the channel. The ξ1 and ξ2 are two independent

Gaussian random variables with σ1 = 0.02 and σ2 = 0.01. The two-dimensional (n = 2) Hermite-Chaos, the optimal
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Askey-Chaos in this case, is employed. Although the solution suggests that only a first-order expansion (p = 1) is

needed, higher-order terms (p > 1) are included in the computation but are identically zero as expected. Another

test is to set the initial condition of the flow to an arbitrary random state. We add perturbation terms to the exact

solution (equation (53)) for each random mode in the form of uk(x, y, 0) = αpf(x, y) and vk(x, y, 0) = αpg(x, y) for

k = 0, . . . , P . Here p is the order of the chaos expansions and 0 < α < 1 to ensure the decaying of the perturbation.

On the right of figure 7 we show the time history of some dominant random modes of v-velocity at the center of the

channel. It is seen that due to the nonlinear interactions between the random modes some of them are amplified in

the early stage, but eventually all modes converge to the exact solution.

Computations with other types of random inputs have been conducted with their corresponding Askey-Chaos

expansions. More specificly, we set ξ1 and ξ2 to be beta and gamma random variables and employ the Jacobi-Chaos

and Laguerre-Chaos, respectively. Similar results were obtained with the results shown in figure 7.

5.2.2 Pressure-Driven Channel Flow: Non-uniform Boundary Conditions

Next we consider the case of non-uniform random boundary conditions, i.e. the wall boundary conditions at different

locations are partially-correlated. The wall boundary conditions are assumed to be random processes with correlation

function in the form

C(x1, x2) = σ2e−
|x1−x2|

b , (54)

where b is the correlation length. This correlation function has been employed extensively to model processes in

many fields; it is employed here because it allows us to solve the eigenvalue problem (24) of the Karhunen-Loeve

expansion of equation (23) analytically. If this is not the case, a standard numerical eigenvalue solver can be used.
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Figure 8: Deviation of mean solution from a parabolic profile in pressure-driven channel flow with partially-correlated
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By setting a relatively large correlation length b = 100, the eigenvalues of the Karhunen-Loeve expansion are

λ1 = 9.675354, λ2 = 0.1946362, λ3 = 0.05014117, . . .

Due to the fast decay of the eigenvalues, we use the first two terms in the Karhunen-Loeve expansion given by

equation (23). This results in a two-dimensional chaos expansion (n = 2). Resolution-independence checks were

conducted and the fourth-order chaos expansion (p = 4) were found to be sufficient to resolve the problem in the

random space. Using equation (29) this results in a fifteen-term expansion (P = 14). Only the lower wall boundary

condition is assumed to be uncertain with σ = 0.1, while the upper wall is stationary and deterministic. A parabolic

velocity profile is specified at the inlet and zero Neumann condition at the outlet. A mesh with 10 × 2 elements is

employed and basis Jacobi polynomials of sixth-order in each element results in resolution independent solution in

space.
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Figure 9: Contours of rms of u-velocity (upper) and v-velocity (lower).

We first consider the lower wall boundary condition a Gaussian random process and employ the Hermite-Chaos

expansion. Figure 8 shows the velocity contour plot of the deviation of the mean solution at steady-state from a

parabolic profile. The mean of u-velocity remains close to the parabolic shape and the mean of v-velocity, although

small in magnitude, is non-zero. Figure 9 shows steady-state solutions of the rms (root-mean-square) of u and

v-velocity. We see the development of a ‘stochastic boundary layer’ close to the lower wall. All the higher-order

expansion terms are non-zero, which implies that although the random input is a Gaussian process, the solution

output is not Gaussian. Since no analytic solution is available, Monte Carlo (MC) simulation is used to validate the

result. Figure 10 shows the solution of mean velocity u and v along the centerline of the channel. It is seen that

the Monte Carlo solution converges non-monotonically to the Hermite-Chaos result as the number of realizations
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Figure 10: Monte Carlo (MC) and Hermite-Chaos (HC) solution of the mean velocities along the centerline of the
channel; Left: u-velocity, Right: v-velocity.

increases. In this case, it is only after 40, 000 realizations that Monte Carlo solution can capture the solution

accurately, especially the nonlinear interactions close to the inlet. The polynomial chaos solver, with 15 terms in the

expansions, is more than two thousands times faster than the Monte Carlo computation without using any special

optimization techniques. In figure 11 the solution of the mean velocity along the centerline is shown corresponding to
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Figure 11: Hermite-Chaos solution of the mean velocities along the centerline of the channel with different σ; Left:
u-velocity, Right: v-velocity.

different values of σ. It can be seen that as the intensity of the input uncertainty σ increases the stochastic solution

responses increase nonlinearly.

In figure 12 we plot the mean solution along the centerline of the channel with different types of stochastic inputs.

Specifically, we assume the random processes of the low wall boundary condition are zero-mean Gaussian, uniform and
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exponential processes with the same exponential correlation structure (equation (54)) and fixed parameter σ = 0.4.

The corresponding Askey-Chaos, i.e., the Hermite-, Legendre- and Laguerre-Chaos, respectively, are employed. The

variance of the velocity, non-dimensionalized by the input variance σ2, is shown in figure 13. It is seen that the

uniform random process results in a smoother solution with smaller variances due to the fact that the uniform

distribution has finite support.
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Figure 12: Chaos solution of mean velocities along the centerline of the channel with different types of input processes;
Left: u-velocity, Right: v-velocity.
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Figure 13: Chaos solution of variance along the centerline of the channel with different types of input processes; Left:
variance of u-velocity, Right: variance of v-velocity.

Figure 14 shows the solution of mean velocity along the centerline of the channel corresponding to uniform

stochastic process as the lower wall boundary conditions, with the same correlation structure as above (σ = 0.4).

The Legendre-Chaos expansion is employed. The Monte Carlo solution converges to the chaos solution; with 120, 000
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realizations it captures the nonlinear interactions near the inlet accurately. The Legendre-Chaos corresponds to

dimension n = 2 and polynomial order p = 4, which according to the formula of equation (29) gives 15 terms in the

expansion.
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Figure 14: Monte Carlo (MC) and Legendre-Chaos solution of the mean velocities along the centerline of the channel
with uniform stochastic inputs; Left: u-velocity, Right: v-velocity.

5.3 Flow Past a Circular Cylinder

In this section we simulate two-dimensional incompressible flow past a circular cylinder with random fluctuations

superimposed to the freestream. More specifically, the inflow takes the form uin = ū+g, where g is a random variable

or process. Here we focus on the Gaussian process and Hermite-Chaos solution. The size of the computational domain

is [−15, 25]× [−9, 9] and the cylinder is at the origin (0, 0) with diameter D = 1. The definition of Reynolds number

is based on the mean value of the inflow velocity ū and the diameter of the cylinder. The domain consists of 412

triangular elements with periodic conditions specified in the crossflow direction. Sixth-order Jacobi polynomial in

each element is observed to result in resolution-independent solution in space for Reynolds number less than 200.

5.3.1 Flow Close to First Critical Reynolds Number

It is well known that for two-dimensional flow past a circular cylinder, the first critical Reynolds number is around

Re ∼ 40, where the flow bifurcates from steady state to periodic vortex shedding [30]. Here we study the effects of

the upstream random perturbations close to this Reynolds number. We set uin = ū + σξ, where ξ is a Gaussian

random variable and σ is its standard deviation. The one-dimensional Hermite-Chaos expansion is thus employed.

The pressure at the rear stagnation point of the cylinder is extremely sensitive to the vortex shedding state and is

monitored in our computation.

23



t
0 100 200 300 400 500 600

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

σ=0.1, p=4
σ=0.1, p=6
Deterministic pressure

t
900 925 950 975 1000

-0.25

-0.2496

-0.2492

-0.2488

-0.2484

-0.248

-0.2476

-0.2472

σ=0.1, p=6
Deterministic pressure

Figure 15: Time history of mean pressure at the rear stagnation point at Re = 40 (Gaussian perturbation with
σ = 0.1); Left: The time history, Right: Close-up view.

Figure 15 shows the time history of the mean pressure at the rear stagnation point at Re = 40, which is close

to the critical Reynolds number. Solution with fourth-order and sixth-order Hermite-Chaos are shown, together

with the deterministic pressure history as reference. A negligible difference is observed between fourth-order and

sixth-order chaos solutions (less than 0.1%). Thus, the solution can be considered as resolution-independent in the

random space. In the close-up view we see that the 10% random perturbation (σ = 0.1) triggers an instability and

the flow becomes weakly periodic, as opposed to the deterministic solution which remains steady.

Next, we lower further the inflow Reynolds number to Re = 35. In figure 16 we show the time history of the

mean pressure signal at the rear stagnation point. Again, resolution independence checks show a negligible difference

(less than 0.1%) in the solutions by fourth-order and sixth-order Hermite-Chaos. It is shown that at this Reynolds

number a 10% random perturbation (σ = 0.1) is unable to trigger an instability and the flow remains steady. On

the other hand, with a larger perturbation (σ = 0.2) the flow becomes weakly unsteady again.

These results suggest that the inflow random perturbations have noticeable effects on the stability of the flow near

its critical Reynolds number. In fact, the existence of upstream perturbation induces the instability and forces the

transition to occur at lower Reynolds number. This study is similar to that of [31] where the convective instability

is studied by introducing random perturbations at the inflow of the backward-facing step flow. Instead of running

many realizations of the deterministic flow solver, here we can resolve the propagation of inflow uncertainty by chaos

expansion in one single run of the stochastic solver.
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Figure 16: Time history of mean pressure at the rear stagnation point at Re = 35; Left: The time history, Right:
Close-up view.

5.3.2 Flow at Re = 100

We consider another case at Re = 100 with freestream random velocity partially correlated. The inflow is uin =

ū+g(y) where g(y) is a Gaussian process with the exponential covariance kernel of equation (54) with σ = 0.02. Again,

a relatively large correlation length is chosen (b = 100) so that the first two eigenmodes are adequate to represent the

process by Karhunen-Loeve expansion (23). Thus, we employ a two-dimensional Hermite-Chaos expansion (n = 2)

and fourth-order chaos (p = 4).

Figure 17 shows the pressure signal, together with the deterministic signal for reference (denoted as PD in dotted

line). We see that the stochastic mean pressure signal has a smaller amplitude and is out-of-phase with respect to

the deterministic signal. Although initially, the stochastic response follows the deterministic response, eventually

there is a change in the Strouhal frequency as shown in figure 18. Specifically, the Strouhal frequency of the mean

stochastic solution is slightly lower than the deterministic one and has a broader support.

In figure 19 we present velocity profiles along the centerline for the deterministic and the mean stochastic solution

at the same time instant. We see that significant quantitative differences emerge even with a relatively small 2%

uncertainty in the freestream. In figure 20 we plot instantaneous vorticity contours for the mean of the vorticity and

compared it with the corresponding plot from the deterministic simulation; we observe a diffusive effect induced by

the randomness. In figure 21 we plot contours of the corresponding rms of vorticity. It shows that the uncertainty

influences the most interesting region of the flow, i.e., the shear layers and the near-wake but not the far-field.
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6 Summary and Discussion

We have developed a stochastic spectral method to model uncertainty and its propagation in simulations of incom-

pressible flows. Numerical examples were presented for uncertain boundary conditions but the method can also be

applied to model uncertainty in the boundary domain, e.g. a rough surface, in the transport coefficients, e.g. the

eddy viscosity in large eddy simulations and other transport models, or in interaction forces for coupled problems.

It provides a formal procedure for constructing a composite error bar for CFD applications, as proposed in [32], that

includes, in addition to the discretization errors, contributions due to imprecise physical inputs to the simulation.

More specifically, we have generalized the original polynomial chaos idea of Wiener and proposed a broader

framework, i.e. the Askey-Chaos, which includes Wiener’s Hermite-Chaos as a subset. For the most commonly

known probability distributions, there exists a corresponding “best” orthogonal functional, in the sense that it

leads to the substantial dimensional reducibility. We also applied the Askey-Chaos expansion to the Navier-Stokes

equations to model uncertainty in incompressible flow simulations for steady and unsteady problems. Convergence

was verified with comparisons against exact solutions and solutions from Monte Carlo simulations for steady-state

problems.

As regards efficiency, a single Askey-Chaos based simulation, albeit computationally more expensive than the

deterministic Navier-Stokes solver, is able to generate the solution statistics in a single run. Specifically, an Askey-

Chaos Navier-Stokes simulation with a total number of terms (P +1) is approximately (P +1) times more expensive

than the corresponding deterministic one. (The overhead associated with the coupling terms is negligible). In

contrast, for the Monte Carlo simulation, tens of thousands of realizations are required for converged statistics, which

is prohibitively expensive for most CFD problems in practice. For the problems we studied here we can only make

direct comparisons for the steady-state cases, e.g. the pressure-driven flow with random boundary conditions. In the
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case of the Hermite-Chaos, the speed-up factor is approximately 2,500 (see figure 10; (40,000/15)) for comparable

accuracy of the first two moments. Similarly, for the Legendre-Chaos the speed-up factor is about 8,000 (see figure

14; (120,000/15)). Clearly, better Monte Carlo algorithms (e.g., accelerated versions with variance reduction) could

reduce this factor but we still expect a three orders of magnitude speed-up for most problems involving a relatively

low number of random dimensions.

There are, however, several open problems that need to be resolved for the Askey-Chaos to be a robust and

effective tool for modeling uncertainty. In particular, further research is required on:

• Convergence rate. The relatively poor resolution properties of Hermite and Laguerre expansions, compared to

other spectral polynomials, are well documented in the literature [33, 34]. However, re-scaling procedures, as

done in [35], can be applied or a change of the trial basis from the Askey scheme, as demonstrated in section

5.1.4, can be employed to accelerate convergence.

• Dimensionality of the stochastic input. This, in turn, determines the dimensionality of the random space and

correspondingly the computational complexity of the problem. For a physical input random process with a

very short correlation length, a high dimensional chaos expansion is required. As shown in equation (29), the

number of expansion terms (P + 1) increases fast, although algebraically, both with the dimension n as well

as the polynomial order p. In contrast, the convergence rate of the Monte Carlo method is independent of the

number of random dimensions.

• Interaction with spatial/temporal discretization. In this paper, we have employed a multi-step time integrator

and spectral/hp element methods for discretizing the deterministic operators. Some of the conclusions of the

work presented here may not be readily extended to other discretizations.

The aforementioned issues can be addressed by systematic studies, investigating, for example, different type

projections, filtering, proper trial basis, rescaling, etc. We are currently working in addressing some of these issues

and we will report results in future publications.
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A Some Orthogonal Polynomials in Askey scheme

In this section we briefly review the definitions and properties of some important orthogonal polynomials from Askey

scheme, which are discussed in this paper for the Wiener-Askey polynomial chaos.

A.1 Continuous Polynomials

A.1.1 Hermite Polynomial Hn(x) and Gaussian Distribution

Definition:

Hn(x) = (2x)n 2F0

(

−n
2
,−n− 1

2
; ;− 1

x2

)

. (55)

Orthogonality:

1√
π

∫ ∞

−∞

e−x
2

Hm(x)Hn(x)dx = 2nn!δmn. (56)

Recurrence relation:

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0. (57)

Rodriguez formula:

e−x
2

Hn(x) = (−1)n dn

dxn

(

e−x
2
)

. (58)

The weighting function is w(x) = e−x
2

from the orthogonality condition (56). After rescaling x by
√
2, the

weighting function is the same as the probability density function of a standard Gaussian random variable with zero

mean and unit variance.

A.1.2 Laguerre Polynomial L
(α)
n (x) and Gamma Distribution

Definition:

L(α)
n (x) =

(α+ 1)n
n!

1F1(−n;α+ 1;x). (59)

Orthogonality:
∫ ∞

0

e−xxαL(α)
m (x)L(α)

n (x)dx =
Γ(n+ α+ 1)

n!
δmn, α > −1. (60)

Recurrence relation:

(n+ 1)L
(α)
n+1(x)− (2n+ α+ 1− x)L(α)

n (x) + (n+ α)L
(α)
n−1(x) = 0. (61)

Rodriguez formula:

e−xxαL(α)
n (x) =

1

n!

dn

dxn
(

e−xxn+α
)

. (62)
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Recall that the Gamma distribution has the probability density function

f(x) =
xαe−x/β

βα+1Γ(α+ 1)
, α > −1, β > 0. (63)

Despite of the scale parameter β and a constant factor Γ(α+1), it is the same as the weighting function of Laguerre

polynomial.

A.1.3 Jacobi Polynomial P
(α,β)
n (x) and Beta Distribution

Definition:

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(

−n, n+ α+ β + 1;α+ 1;
1− x

2

)

. (64)

Orthogonality:
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x)dx = h2nδmn, α > −1, β > −1, (65)

where

h2n =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
.

Recurrence relation:

xP (α,β)
n (x) =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
P
(α,β)
n+1 (x)

+
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
P (α,β)
n (x)

+
2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
P
(α,β)
n−1 (x). (66)

Rodriguez formula:

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n
2nn!

dn

dxn
[

(1− x)n+α(1 + x)n+β
]

. (67)

The Beta distribution has the probability density function

f(x) =
(x− a)β(b− x)α

(b− a)α+β+1B(α+ 1, β + 1)
, a ≤ x ≤ b, (68)

where B(p, q) is the Beta function defined as

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (69)

It is clear that despite of a constant factor the weighting function of Jacobi polynomial w(x) = (1−x)α(1+x)β from

(65) is the same as the probability density function of Beta distribution defined in domain [−1, 1]. When α = β = 0,

the Jacobi polynomials become the Legendre polynomials and the weighting function is a constant which corresponds

to the important uniform distribution.
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A.2 Discrete Polynomials

A.2.1 Charlier Polynomial Cn(x; a) and Poisson Distribution

Definition:

Cn(x; a) = 2F0

(

−n,−x; ;−1

a

)

. (70)

Orthogonality:
∞
∑

x=0

ax

x!
Cm(x; a)Cn(x; a) = a−nean!δmn, a > 0. (71)

Recurrence relation:

−xCn(x; a) = aCn+1(x; a)− (n+ a)Cn(x; a) + nCn−1(x; a). (72)

Rodriguez formula:

ax

x!
Cn(x; a) = ∇n

(

ax

x!

)

, (73)

where ∇ is the backward difference operator defined as

∆f(x) = f(x+ 1)− f(x) and ∇f(x) = f(x)− f(x− 1). (74)

The probability function of Poisson distribution is

f(x; a) = e−a
ax

x!
, k = 0, 1, 2, . . . . (75)

Despite of a constant factor e−a, it is the same as the weighting function of Charlier polynomials.

A.2.2 Krawtchouk Polynomial Kn(x; p,N) and Binomial Distribution

Definition:

Kn(x; p,N) = 2F1

(

−n,−x;−N ;
1

p

)

, n = 0, 1, . . . , N. (76)

Orthogonality:

N
∑

x=0

(

N

x

)

px(1− p)N−xKm(x; p,N)Kn(x; p,N) =
(−1)nn!
(−N)n

(

1− p

p

)n

δmn, 0 < p < 1. (77)

Recurrence relation:

−xK(x; p,N) = p(N − n)Kn+1(x; p,N)− [p(N − n) + n(1− p)]Kn(x; p,N)

+ n(1− p)Kn−1(x; p,N). (78)
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Rodriguez formula:
(

N

x

)(

p

1− p

)x

Kn(x; p,N) = ∇n

[(

N − n

x

)(

p

1− p

)x]

. (79)

Clearly, the weighting function from (77) is the probability function of the binomial distribution.

A.2.3 Meixner Polynomial Mn(x;β, c) and Negative Binomial Distribution

Definition:

Mn(x;β, c) = 2F1

(

−n,−x;β; 1− 1

c

)

. (80)

Orthogonality:

∞
∑

x=0

(β)x
x!

cxMm(x;β, c)Mn(x;β, c) =
c−nn!

(β)n(1− c)β
δmn, β > 0, 0 < c < 1. (81)

Recurrence relation:

(c− 1)xMn(x;β, c) = c(n+ β)Mn+1(x;β, c)− [n+ (n+ β)c]Mn(x;β, c)

+ nMn−1(x;β, c). (82)

Rodriguez formula:

(β)xc
x

x!
Mn(x;β, c) = ∇n

[

(β + n)xc
x

x!

]

. (83)

The weighting function is

f(x) =
(β)x
x!

(1− c)βcx, 0 < p < 1, β > 0, x = 0, 1, 2, . . . . (84)

It can verified that it is the probability function of negative binomial distribution. In the case of β being integer, it

is often called the Pascal distribution.

A.2.4 Hahn Polynomial Qn(x;α, β,N) and Hypergeometric Distribution

Definition:

Qn(x;α, β,N) = 3F2(−n, n+ α+ β + 1,−x;α+ 1,−N ; 1), n = 0, 1, . . . , N. (85)

Orthogonality: For α > −1 and β > −1 or for α < −N and β < −N ,

N
∑

x=0

(

α+ x

x

)(

β +N − x

N − x

)

Qm(x;α, β,N)Qn(x;α, β,N) = h2nδmn, (86)
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where

h2n =
(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
.

Recurrence relation:

−xQn(x) = AnQn+1(x)− (An + Cn)Qn(x) + CnQn−1(x), (87)

where

Qn(x) := Qn(x;α, β,N)

and










An = (n+α+β+1)(n+α+1)(N−n)
(2n+α+β+1)(2n+α+β+2)

Cn = n(n+α+β+N+1)(n+β)
(2n+α+β)(2n+α+β+1) .

Rodriguez formula:

w(x;α, β,N)Qn(x;α, β,N) =
(−1)n(β + 1)n

(−N)n
∇n[w(x;α+ n, β + n,N − n)], (88)

where

w(x;α, β,N) =

(

α+ x

x

)(

β +N − x

N − x

)

.

If we set α = −α̃− 1 and β = −β̃ − 1, we obtain

w̃(x) =
1

(

N−α̃−β̃−1
N

)

(

α̃
x

)(

β̃
N−x

)

(

α̃+β̃
N

)

.

Apart from the constant factor 1/
(

N−α̃−β̃−1
N

)

, this is the definition of hypergeometric distribution.

34



References

[1] Workshop on Validation and Verification of Computational Mechanics Codes. Technical report, Caltech, De-

cember 1998.

[2] Workshop on Predictability of Complex Phenomena, Los Alamos, 6-8 December 1999. Technical report.

[3] Workshop on Decision Making Under Uncertainty, IMA, 16-17 September 1999. Technical report.

[4] T.J. Oden, W. Wu, and M. Ainsworth. An a posteriori error estimate for finite element approximations of the

Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng., 111:185, 1994.

[5] L. Machiels, J. Peraire, and A.T. Patera. A posteriori finite element output bounds for the incompressible

Navier-Stokes equations; application to a natural convection problem. J. Comp. Phys., to appear, 2001.

[6] R.G. Hills and T.G. Trucano. Statistical validation of engineering and scientific models: Background. Technical

Report SAND99-1256, Sandia National Laboratories, 1999.

[7] M. Shinozuka and G. Deodatis. Response variability of stochastic finite element systems. Technical report,

Dept. of Civil Engineering, Columbia University, New York, 1986.

[8] R.G. Ghanem and P. Spanos. Stochastic Finite Elements: a Spectral Approach. Springer-Verlag, 1991.

[9] N. Wiener. The homogeneous chaos. Amer. J. Math., 60:897–936, 1938.

[10] N. Wiener. Nonlinear problems in random theory. MIT Technology Press and John Wiley and Sons, New York,

1958.

[11] W.C. Meecham and A. Siegel. Wiener-Hermite expansion in model turbulence at large Reynolds numbers. Phys.

Fluids, 7:1178–1190, 1964.

[12] A. Siegel, T.Imamura, and W.C. Meecham. Wiener-Hermite expansion in model turbulence in the late decay

stage. J. Math. Phys., 6:707–721, 1965.

[13] W.C. Meecham and D.T. Jeng. Use of the Wiener-Hermite expansion for nearly normal turbulence. J. Fluid

Mech., 32:225–249, 1968.

[14] S.A. Orszag and L.R. Bissonnette. Dynamical properties of truncated Wiener-Hermite expansions. Phys. Fluids,

10:2603, 1967.

35



[15] S.C. Crow and G.H. Canavan. Relationship between a Wiener-Hermite expansion and an energy cascade. J.

Fluid Mech., 41:387–403, 1970.

[16] A.J. Chorin. Gaussian fields and random flow. J. Fluid Mech., 85:325–347, 1974.

[17] R. Askey and J. Wilson. Some basic hypergeometric polynomials that generalize Jacobi polynomials. Memoirs

Amer. Math. Soc., AMS, Providence RI, 319, 1985.
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